
Hindawi Publishing Corporation
PPAR Research
Volume 2012, Article ID 304760, 23 pages
doi:10.1155/2012/304760

Review Article

PPARs: Interference with Warburg’ Effect and
Clinical Anticancer Trials

Joseph Vamecq,1, 2 Jean-Marie Colet,3 Jean Jacques Vanden Eynde,4 Gilbert Briand,2

Nicole Porchet,2 and Stéphane Rocchi5
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The metabolic/cell signaling basis of Warburg’s effect (“aerobic glycolysis”) and the general metabolic phenotype adopted by
cancer cells are first reviewed. Several bypasses are adopted to provide a panoramic integrated view of tumoral metabolism, by
attributing a central signaling role to hypoxia-induced factor (HIF-1) in the expression of aerobic glycolysis. The cancer metabolic
phenotype also results from alterations of other routes involving ras, myc, p53, and Akt signaling and the propensity of cancer cells
to develop signaling aberrances (notably aberrant surface receptor expression) which, when present, offer unique opportunities for
therapeutic interventions. The rationale for various emerging strategies for cancer treatment is presented along with mechanisms
by which PPAR ligands might interfere directly with tumoral metabolism and promote anticancer activity. Clinical trials using
PPAR ligands are reviewed and followed by concluding remarks and perspectives for future studies. A therapeutic need to associate
PPAR ligands with other anticancer agents is perhaps an important lesson to be learned from the results of the clinical trials
conducted to date.

1. Introduction

Nowadays, cancer therapy offers strategies that do not pri-
marily target nuclear DNA integrity, repair, duplication, or
synthesis. These approaches address an event that is specific
to cancer cells (inhibition/neutralization of overexpressed
tyrosine kinase, for instance) or disrupt universal features of
cancer development such as neovascularization. Though the
therapeutic target should ideally be essential in cancer cells
but not in normal cells, treatment may in turn restore sen-
sitivity or remove resistance to physiological processes such
as the apoptotic pathways. Various mechanisms underlying
the anticancer actions of PPAR effects and ligands have pre-
viously been developed in other issues of this journal [1–7],
as well as some controversial activity, notably regarding
PPARβ/δ-driven effects [8–10].

Besides neovascularization, other characteristics common
to many cancers are currently targeted by “mitocans” (drugs

destabilizing tumoral mitochondria to induce cell death by
cytotoxicity or apoptosis) [11, 12] and what might be called
“metabocans” (drugs disrupting tumoral metabolism), acro-
nyms of “mitochondria and cancer” and “metabolism and
cancer”, respectively. The compounds covered by these acro-
nyms may, however, overlap.

The desired endpoint of any anticancer therapy is a com-
bination of optimal efficacy, minimal side effects, and pre-
vention of resurgence. In practice, it is sometimes far from
being met, some cancers being still incurable or hardly re-
solvable. The optimization of this goal resides in targeting
features distinguishing more categorically cancer cells from
normal cells. Encouraging examples have been provided by
tyrosine kinase-directed antibodies or inhibitors which des-
pite chemoresistance have served as templates to boost the
development of novel anticancer drugs that target, for in-
stance, breast cancers overexpressing HER-2 surface recep-
tor or chronic myeloid leukemia overexpressing BCR-ABL
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Figure 1: Metabolism of glycolysis-derived NADH and pyruvate in normoxia (a), anoxia and cancer (b). (a) Normoxic normal cells classical-
ly oxidize glucose to completion. Cytosolic enzymes convert 1 molecule of glucose to 2 molecules of pyuvate and along with 2 ATP and 2
NADH. Mitochondrial oxidations of glucose-derived pyruvate and NADH involve pyruvate dehydrogenase (PDH), Krebs cycle (KC), and
respiratory chain electron transfer/oxidative phosphorylation (OXPHOS) complexes I, II, II, IV, and V, yielding classically 34 ATP. Complete
oxidation of glucose therefore results in the production of 36 (2 cytosolic + 34 mitochondrial) ATP. (b) The contribution of mitochondria
to glucose oxidation is disrupted in anoxic normal or cancer cells by the arrest of mitochondrial respiration (lack of oxygen in anoxia) and
in normoxic and anoxic cancer cells by different convergent mechanisms. Among these, reduced pyruvate dehydrogenase activity may result
from overexpressed pyruvate dehydrogenase kinase 1 and limited access of pyruvate to the mitochondria due to the closed state of mitochon-
drial outer membrane voltage-dependent anionic channel (VDAC). Reduced activities of the respiratory chain complexes I and IV and muted
Krebs cycle enzymes may be also encountered. Pyruvate, formed intracytosolically from glucose via glycolysis, is no longer oxidized in mito-
chondria and is metabolized by cytosolic lactate dehydrogenase. In cancer cells, it must be stressed that the metabolic events mentioned
above take place in the context of fuel producing glycolysis in which cytosolic net ATP formation occurs. In turn, the glycolytic flux may be
blocked at the pyruvate kinase step (see Figure 4), resulting in biosynthetic precursor-producing glycolysis with little or no net glycolytic
ATP or pyruvate production. Cytosolic pyruvate is then provided via other routes (precursors other than glucose) including serinolysis and
glutaminolysis, pathways which refer to conversions of serine and glutamine to lactate, respectively.

tyrosine kinase, a fusion gene product [13]. The anticancer
activity of drugs antagonizing neovascularization by interfer-
ing for instance with vascular endothelial growth factor
(VEGF) signaling represents another development in cancer-
targeted therapy [14]. Mitocans also currently represents a
promising approach [11]. Disrupting cancer cell metabolism
to induce cell death (via apoptosis, necrosis, or both) repre-
sents another elegant approach. “Metabolic therapy of can-
cer,” a concept aimed at controlling malignant behavior, was
discussed before apoptosis came onto the scene [15, 16]. It
would now be better to speak of metabolism disruption-
driven cell death. Several drugs could be referred to as mito-
cans, metabocans, or aberrocans (disruption of biased sig-
naling), for instance, monoclonal antibodies or kinase inhib-
itor-based drugs, and many other such drugs are being de-
veloped at present [17]. A major difficulty is targeting cancer
cell signaling aberrance(s) without affecting kinase functions
that are of crucial importance for normal cells.

Cancer cells express a metabolic phenotype that is distinct
from normal cells as emphasized by Figure 1 which illustrates
the contributions of glucose oxidation to ATP synthesis in

normal cells under normoxia and in hypoxic/anoxic or can-
cer cells (cancer cells will be considered as having lazy mito-
chondria throughout this review) [18, 19]. In contrast to the
normal aerobic glucose metabolism pathway which uses
mitochondrial oxidation, cancer cells develop Warburg’s
effect [20, 21], in which aerobic glycolysis is very much in-
creased and for which drug-driven disruption might lead to
minimal side effects. Because Warburg’s effect involves most
if not all cancers, its disruption in a way and extent that
cannot be counterbalanced by cancer cells might then resolve
the malignant process, independently of its origin.

The ubiquity of Warburg’s effect in tumors has been evi-
denced by positron emission tomography scan imagery of
18F-deoxyglucose (FDG-PET), a glucose analogue transport-
ed and phosphorylated in cells without further metabolism
for several decades. The tight link existing between tumoral
status and FDG-PET data might confirm the pertinence of
any therapeutic strategy aimed at disrupting tumoral meta-
bolism. Interestingly, 2-deoxy-D-glucose and analogues are
currently being developed as a drug template for treating
cancer by competing with the metabolic feature that it was
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first used to demonstrate when used in its labeled form (18F-
deoxyglucose) in FDG-PET. More precisely, 2-deoxy-D-glu-
cose presents anticancer properties and may potentiate the
efficacy of prototype anticancer drugs [22].

Targeting tumoral metabolism in a way that cannot be
counterbalanced by cancer cells is not, however, an easy task.
Pragmatically, this strategy requires a general integrated view
of tumoral metabolism because it is not a single metabolic
step that is altered but the entire energetic metabolism that
works on a pattern profoundly affected in cancer (versus nor-
mal) cells. This metabolic modus vivendi results from permis-
sive alterations in cell signaling among which HIF-1 routes.
Although it would be an oversimplification to consider that
tumoral metabolism is close to anaerobic metabolism, it may
help in understanding how, step by step, it is organized in
comparison with normal metabolism.

An appraisal of this organization in relation to Warburg’s
effect is therefore provided in the following two chapters by
explaining step by step the metabolic and signaling articula-
tions that exist between tumoral glycolysis and cancer mito-
chondria, and then the particular role of tumoral pyruvate
kinase. The properties of PPARs in relation with Warburg’s
effect and clinical trials using PPARs as anticancer agents, all
mechanisms comprised, will be then reviewed.

2. Tumoral Glycolysis and Mitochondria

2.1. General Characteristics. Different patterns of glucose
metabolism are observed in normal cells in normoxia and
hypoxia/anoxia. Under oxygen, one glucose molecule is oxi-
dized in the cytosol into two pyruvates which enter mito-
chondria for decarboxylation by pyruvate dehydrogenase
forming acetyl-CoA which is further oxidized via the Krebs
cycle (Figure 1). This aerobic oxidation of glucose yields ap-
proximately 36 molecules of ATP. Hypoxic/anoxic normal
cells develop only the glycolytic contribution to glucose oxi-
dation, converting one glucose into two pyruvates that are
then reduced locally into lactates by lactate dehydrogenase.
This reaction recycles the NAD+ required for glycolysis to
proceed. The net result is here two (instead of 36) molecules
of ATP formed by oxidation of one molecule of glucose
(Figure 1).

Normoxic oxidation of glucose in cancer cells resembles
that observed in hypoxic/anoxic normal cells. This similari-
ty is emphasized when they are referring to as aerobic (War-
burg’s effect) and anaerobic glycolysis, respectively. The tu-
moral metabolic phenotype results from alterations in sever-
al regulatory pathways including p53, myc, ras, Akt, and HIF-
1 signaling pathways [23–26]. The biased nature of signaling
pathways, especially the HIF-1 signaling pathway, the role of
pyruvate kinase and the fact that cancer cells have to cope
with hypoxia influence tumoral metabolism and provide a
general outline for the process. The ability of cancer cells to
function like anaerobic cells despite normoxia might explain
their extraordinary tolerance to anoxia.

2.2. Cell Signalling Involving HIF-1. The anaerobic-like meta-
bolic phenotype observed in normoxic cancer cells may

result from biased sensing of oxygen by the HIF-1 signaling
pathway. HIF-1 inactivation and activation pathways [27–
29] are illustrated in Figure 2. In normal cells, oxygen blocks
the activation of HIF-1 signaling. Exposure of cells to oxygen
downregulates functional HIF-1 by restricting the availability
of its α subunit. More precisely, molecular oxygen is sensed
by cell membrane NADPH oxidase which reduces it to super-
oxide. This species oxidatively damages the HIF-1α subunit,
initiating degradation by the proteasome (Figure 2). Func-
tional HIF-1, following heterodimerization of the α and β
HIF-1 subunits in the cytosol, undergoes nuclear transloca-
tion and activates target genes. Molecular oxygen normally
“paralyzes” HIF-1 signaling by inducing depletion of its α
subunit. In hypoxic/anoxic normal cells, the α subunit is
little oxidized/degraded, favoring functional HIF-1, nuclear
translocation, and gene activation. These events give rise to
the glycolytic phenotype in which, in contrast to oxidative
phenotype, mitochondrial oxidations do not contribute to
glucose oxidation. Normal cells develop oxidative and glyco-
lytic phenotypes in normoxic and anoxic conditions, respec-
tively.

In normoxic cancer cells, HIF-1 inactivation is disrupted,
and hence HIF-1 signaling is enhanced, giving a rise to a gly-
colytic phenotype despite the presence of oxygen. Figure 2(b)
details hydroxylation and the subsequent steps of the inac-
tivation pathway. In normal normoxic cells, oxygen contri-
butes to HIF-1 inactivation by initiating superoxide-driven
oxidative damage to the HIF-1α subunit (see Figure 2(a))
and by promoting hydroxylation steps (also considered as
oxygen sensors). In cancer cells, formation of the complex
involving von Hippel Lindau protein (mutations affecting
the E3 ubiquitin complex ligase gene) may be deficient
[30]. Mutations may also affect the succinate dehydroge-
nase and/or fumarase genes [31, 32], and the resulting
succinate accumulation alters hydroxylation steps by prod-
uct inhibition. These genes (von Hippel Lindau protein,
succinate dehydrogenase, and fumarase genes) represent
tumor suppressor genes, inborn errors of which favor cancer
development [31, 32].

2.3. Metabolism Compartmentalization Induced by HIF-1 Sig-
naling. Permanent activation of the HIF-1 pathway and
some other signaling pathways in cancer cells enhance the ex-
pression of genes encoding proteins involved not only in
tumoral angiogenesis and substrate supply (for instance,
erythropoietin and VEGF) (see Figure 2(a)) but also in the
glycolytic phenotype (Figure 3). Tumoral glucose metabo-
lism increases cytosolic NADH which is oxidized back to
NAD+ by cytosolic lactate dehydrogenase which converts
pyruvate into lactate (Figure 3). Figure 3(b) illustrates how
tumoral glycolysis starts at the mitochondrial outer mem-
brane where hexokinase type II (HKII) interacts with the
voltage-dependent anionic channel (VDAC), also located in
this membrane, via a binding domain [33].

2.4. Metabolic Impact of Tumoral Glycolysis. The oxidation
of glucose to pyruvate (glycolysis) yields less energy (only 2
ATPs instead of 36 ATPs, see above) than glucose oxidation
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Figure 2: Activation and inactivation pathways for hypoxia-induced factor 1 (HIF-1) in normoxia, hypoxia/anoxia, and cancer. (a) In nor-
moxic normal cells, molecular oxygen (O2) sensing by membrane NADPH oxidase results in formation of superoxide radical anions and
subsequently in the control of the HIF-1 signaling pathway via proteolytic degradation of the HIF-1α subunit. These events prevent the
re-cruitment of functional HIF-1 which results from heterodimerization of HIF-1α and β subunits. In anoxia/hypoxia, a severe drop in the
levels of NADPH oxidase-driven superoxide radical anion prevents oxidative and proteolytic damage of the HIF-1α subunit which then
becomes available to form functional HIF-1 and results in signaling activation. In cancer cells, the HIF-1 signaling pathway may be overex-
pressed via, for instance, mechanisms illustrated in Panel b. (b) This panel details hydroxylation and the subsequent steps of the HIF-1 in-
activation pathway and its disruption in cancer cells. Mechanisms that neutralize the HIF-1 pathway in cancer cells may include alteration of
gene expression for succinate dehydrogenase and fumarase (the net results of which are a rise in succinate levels which interfere with the
hydroxylation steps by product inhibition) (mechanism 1) and for von Hippel-Lindau protein (mechanism 2) (preventing formation of
E3-ubiquitin ligase proteic complex and hence HIF-1α inactivation). Other comments are in the text.

to CO2 (glycolysis plus mitochondrial oxidations). Glycolytic
mobilization of ATP as developed by cancer cells is, however,
faster than in normal cells. Therefore, despite a lower recov-
ery, energy mobilization is faster in tumoral cells as attested
by the increased uptake of 18F-deoxyglucose observed in
FDG-PET scans of patients with malignant tumors.

Normal cell mitochondria are positively charged by the
respiratory chain-driven proton gradient. In contrast, cancer
cell (lazy) mitochondria are negatively charged on account
of the accumulation of negative molecules due to the closed
state of VDAC.

In normal mitochondria, VDAC is open, allowing the
exchange of small solutes (pyruvate and other negatively

charged compounds with a molecular weight inferior to
1.5 KDa) [34]. In cancer cell mitochondria, VDAC is closed
by a rise in cytoplasmic NADH and its interaction with HKII
[34], therefore, inhibiting the exchange of small solutes. The
VDAC-HKII complex can dissociate and VDAC may reopen
subsequently following an increase in the levels of glucose-6-
phosphate which is produced by glucokinase or hexokinases.
Figure 3(c) presents various therapeutic opportunities based
on these differences between cancer and normal cells.
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Figure 3: Illustration of how biased HIF-1 signaling in cancer cells may cause Warburg’ effect and lead to modified protein content and sub-
cellular localization (a), metabolism (b), and cancer-specific therapeutic opportunities (c). The role of aberrant HIF-1 signalling in cancer
cells by encoding proteins (a) which modify the intermediary metabolism in a way that favors the emergence of glycolytic metabolism even
in normoxic conditions (b). Note the convergence of the HIF-1-driven increase of proteins, convergence which favors tumor vascularization
(Figure 2(a)), and aerobic glycolysis (this figure). Panel (c) illustrates therapeutic opportunities related to cancer cell metabolism. Inhibition
of glucose transport and activation disrupts Warburg’s effect, depriving cancer cells of their preferential metabolic substrate. Inhibition of
hexokinase may in addition lead to its detachment from mitochondrial VDAC. Blocking the utilization of glucose 6-phosphate by increasing
its concentrations secondarily leads to hexokinase inhibition and hence its detachment from VDAC (reopening this channel). Direct interac-
tion with VDAC might also disrupt the closed state of the channel. The closed channel may be, however, bypassed by small permeant com-
pounds such as pyruvate methyl ester (pme) and dichloroacetate (dca). When VDAC is closed, pyruvate methyl ester, in contrast to pyruvate,
can enter the mitochondrial matrix where an esterase produces pyruvate, following this the action of residual pyruvate dehydrogenase
generates an electron flux towards the respiratory chain (at the level of complex I), a feature capable of triggering mitochondrial apoptosis.
Dichloroacetate inhibits pyruvate dehydrogenase kinase activity and then restores substantial pyruvate dehydrogenase activity and subse-
quent flux towards respiratory chain. Lipopphilic cationic compounds are attracted by cancer cell mitochondria which present abnormally
high negative electric charges consequently to reduced electron chain proton efflux and to the closed state of VDAC (resulting in accumu-
lation of small negative metabolites trapped within the mitochondria). Lipohilic cations may cross mitochondrial membranes, bypassing
VDAC and being insensitive to the closed state of this channel. The intramitochondrial accumulation of lipophilic cations induces destruc-
tion and depletion of mitochondrial DNA. Abbreviations are GLUT1, glucose transporter 1; LDHA, lactate dehydrogenase A; MCT4, mono-
carboxylate transporter 4; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase1; HKII, hexokinase II; VDAC, voltage-de-
pendent anionic channel; pme, pyruvic methyl ester; dca, dichloracetate; RC, respiratory chain.

3. Tumoral Pyruvate Kinase

The ultimate goal of sustained glycolytic rates in cancer cells
is not only to provide an advantageous mode of energy
mobilization that still works when the cell needs to move or

when oxygen in the environment is low. It is also to ensure
anaplerosis of nucleic acid synthesis and other biosynthetic
pathways by supplying ribose phosphate moieties. This sup-
ply is provided by articulations existing between glycolysis
and the pentose phosphate pathway, with the development
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sor-generating (red panels) glycolysis (yellow panel) in cancer cells. Tumoral M2 pyruvate kinase exists in a dimeric inactive form that blocks
pyruvate and ATP formation from glucose. It induces the accumulation of energy-rich phosphometabolites found upstream in the glycolytic
pathway and off which biosynthetic processes may branch. Interconversion to the active tetrameric form of the enzyme may occur when the
glucose supply is high, leading to a rise in fructose 1,6 bisphosphate which stimulates this tetrameric conversion. When glucose levels are
high, cancer cells may then produce energy at the same time as supplying biosynthetic pathways. In this situation, the rise in glycolytic inter-
mediary rich energy phosphometabolites results not from a block located downstream of their production but from an increased load of
glycolysis by glucose. When glucose levels fall again, the subsequent decrease in fructose 1,6 bisphosphate results in recruitment of the
dimeric inactive form of M2 pyruvate kinase. In this case, both energy and pyruvate production (and hence formation of lactate) by the
tumor may derive from the catabolism of aminoacids such as glutamine and serine. The latter sets of metabolic reactions, by analogy with
glycolysis for glucose to lactate production, are referred to as glutaminolysis and serinolysis, respectively. The supply of these aminoacids to
the tumor is associated at distance with notably muscle proteolysis, explaining the progression of patients towards a cachectic state when
the tumor gains in growth and development. Cachexy may be also favored by energy wasting associated to uncoupling of mitochondria
in some cancer cell lines. Except with tumors such as insulinoma and hepatoma, for instance, no hypoglycaemia is, however, induced in
patients since a sustained production of lactate is ensured by the tumor from these aminioacids. Lactate may be recycled to glucose by
gluconeoformator cells, mainly hepatocytes (Cori’s cycle). Biosynthetic pathways branching off glycolysis include sialic acid, nucleic acid,
aminoacid, ether glycerolipid, and ester glycerolipid anabolic pathways. The latter pathway is not emphasized here by inclusion in a red
panel because in many cancer cell lines glycerol phosphate dehydrogenase is deficient thus reducing the availability of glycerol 3-phosphate
and limiting incorporation of neoformed fatty acids into lipids. Fatty acid synthase is often overexpressed, and, along with the removal of
fatty acids (known for immunosuppressive properties) outside the cell, it allows tumoral cells to cope with the massive rise in glycolysis-
driven NADH and proton (H+) formation (glyceraldehyde 3-phosphate dehydrogenase step), avoiding excess acidification and consequent
cell death. The threshold for reversible interconversion of tetrameric to dimeric M2 pyruvate kinase may be lowered by oncogenes in favor
of the dimeric form. As mentioned in the text, the tetrameric active form is part of the glycolytic complex (a complex which groups most
glycolytic enzymes for optimal metabolic function and energy production) whereas the dimeric form separates from this glycolytic complex.

of a nonoxidative pentose phosphate cycle. Ribose phosphate
supply and lactate formation from glucose are distinct exclu-
sive endpoints. When glycolytic intermediates enter the pen-
tose phosphate route (to form ribose 1-P and hence ribose
6-P) or other biosynthetic pathways branching off from gly-
colysis, their carbon skeleton can no longer be used for
pyruvate and lactate formation. Reciprocally, when glucose is
converted to pyruvate (2 pyruvates per glucose), it can no
longer be used for ribose phosphate synthesis and other bio-
synthetic processes. Because proliferative cells need energy,
cell death would occur if no regulatory mechanisms were
implemented when nutrient supply is limited.

Several sensors enable cells to adapt cellular growth and
proliferation to nutrient supply. Pyruvate kinase, which is
responsible for the net ATP formation during glycolysis,
represents such a key sensor. It is, for instance, inhibited by
ATP (high when nutrient supply is high) and activated by
AMP and Pi (high when nutrient supply is low), directing
differently phosphoenolpyruvate (and hence glucose) to-
wards biosynthetic pathways and ATP formation, respective-
ly. Cells have developed an elegant means to avoid pyruvate
kinase inhibition when the glucose supply is low and on the
opposite pyruvate kinase activation when the glucose supply
is high. This regulator, which couples the glucose cell supply
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to pyruvate kinase activity, is fructose 1,6-biP, a potent
physiological activator of pyruvate kinase [35]. Fructose 1,6-
biP is itself dependent on fructose 2,6-biP, the powerful
stimulator of phosphofructokinase [36].

Pyruvate kinase exists in various isoforms, L in the liver
and kidneys (gluconeogenic metabolism), R in red blood
globules; M1 in muscles and the brain (tissues in which rapid
mobilization of energy may be required), and M2 in the
lungs and tissues with nucleogenic metabolism (increased
nucleic acid synthesis) including normal proliferating cells,
stem cells, and tumoral cells [35]. Normal cell and tumoral
M2 isoforms differ in their quaternary structures which
are tetrameric and prominently dimeric, respectively [35].
Tetrameric (normal) and dimeric (tumoral) forms of M2
pyruvate kinase exhibit distinct kinetic properties and induce
distinct processes. Tetrameric M2 pyruvate kinase favors
the conversion of phosphoenolpyruvate to pyruvate and
net glycolytic ATP production, driving glycolytic phospho-
metabolites towards fuel production. In contrast, dimeric
(tumoral) M2 pyruvate kinase is inactive in the presence
of physiological concentrations of phosphoenolpyruvate
and does not promote net ATP formation so glycolytic
phosphometabolites are channeled towards biosynthetic
processes including nucleic acid, aminoacid, sialic acid, and
phospholipid biosynthesis.

Therefore, in tumoral cells exhibiting high glucose
consumption rates, the inactive dimeric form of M2 pyruvate
kinase allows glycolytic phosphometabolites to accumulate
and subsequently be used for biosynthesis. Ribose 5-P
synthesis branches off from glycolysis via the transketo-
lase/transaldolase reaction (nonoxidative pentose phosphate
cycle) because the oxidative pentose phosphate cycle is
inhibited by high levels of fructose 1,6 biP (consecutive to
increased glucose supply and reduced pyruvate kinase activ-
ity) [35]. The role of M2 pyruvate kinase in cancer has been
reviewed in detail elsewhere [35]. In cancer cells, the shift
from dimeric to tetrameric M2 pyruvate kinase is dependent
on fructose 1,6 BiP levels; according to a threshold-driven
regulation mechanism the enzyme is converted from the
dimeric to the tetrameric form when concentrations exceed
the threshold and inversely when concentrations are below
the threshold. The threshold itself is subject to modulation
by signaling molecules such as oncogene products which may
lower the threshold [35]. The contribution of the dimeric
and tetrameric forms of tumoral M2 pyruvate kinase to
Warburg’s effect is illustrated in Figure 4.

4. PPARs, Metabolism, and Inflammation

PPARs are nuclear receptors which influence many aspects
of cell physiology. Their action is pleiotropic and impacts
in diverse ways the signalome, the metabolome, and the cell
cycle. The three PPAR isoforms have metabolic effects and
anti-inflammatory properties. Metabolic effects of PPARs
result notably from the transactivation properties of ligands
involving the PPAR-RXRα heterodimer, whereas the anti-
inflammatory effects of ligands result mainly from the
ability of activated PPARs to combine with transcription

factors involved in inflammation signaling [37]. Figure 5
illustrates this dual ability of PPARs to control the acti-
vation of metabolic proteins by heterodimerizing with
RXRα and hence binding to DNA, and to downregulate
inflammatory pathways by interacting with so-called redox
transcription factors without further binding to DNA of
the PPAR/inflammatory transcription factor complex. These
two types (metabolic and anti-inflammatory) of effects
induced by PPARs could contribute to Warburg’s effect.
Nevertheless, although cumulative evidence supports the
ability of metabolic events such as those induced by PPARs
to interfere with Warburg’s effect, the impact of anti-
inflammatory events similar to those achievable by PPARs
and their ligands on Warburg’s effect has been pointed to
recently and is still little documented.

5. PPARs and Metabolism of Inflammatory
Fatty Acid Derivatives

The link between PPARs and eicosanoid metabolism is
strong, tight, and reciprocal. Indeed, whereas eicosanoid
metabolism may form physiological PPAR ligands [38],
PPARs themselves regulate eicosanoid metabolism. As illus-
trated in Figure 6, at least three physiological PPAR ligands
are issued from arachidonate metabolism, namely LTB4,
PGI2 and 15-deoxy-PGJ2 which activate PPARα, β/δ, and γ,
respectively. By their transrepressive activity, the activation
of PPARs prevents induction of COX2 via a physiological
feedback loop. This loop limits the additional production of
arachidonate-derived inflammatory mediators in response to
oxidative stress (generated for instance by the recruitment
of inflammatory cells) by controlling the level of induction
of COX2 [37]. As COX2 activity increases, more physio-
logical ligands of PPARβ/δ and PPARγ are produced which
potentiate the transrepressive activity of these isoforms on
inflammatory signaling-driven stimulation of COX2 gene
expression (in practice, agonists of each of the three main
PPAR isoforms may induce this antiinflammatory effect).

Physiological activation of PPARα by the LOX-derived
eicosanoid metabolite LTB4 also takes place in the context of
a negative metabolic feedback loop when taking into account
the ability of this PPAR isoform to induce leukotriene-
inactivating pathways. These inactivating pathways may also
concern COX-derived metabolites and include peroxisomal
β-oxidation and fatty acid ω-hydroxylation. Prostaglandins
and leucotrienes may be inactivated by carbon chain short-
ening corresponding to one or two peroxisomal β-oxidation
cycles [39]. They may also be inactivated by hydroxylation
at the terminal carbon position of their fatty acid chain
by a fatty acid ω-hydroxylase (using NADPH+H+, O2, and
cytochrome P450 of the CYP4A or CYP4F subfamilies) [40,
41]. In rodents, the two pathways are activated by PPARα
whilst in humans peroxisomal β-oxidation does not seem to
be induced [39]. In contrast, fatty acid ω-hydroxylase activity
and CYP4A levels are enhanced by PPARα activation in the
humans [42].
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6. PPARs, Inflammation, Angiogenesis, and
Warburg’s Effect

The modulation of inflammatory events by PPARs in relation
to Warburg’s effect is starting to be described. Though
the role of inflammation in cancer has been largely docu-
mented, the relations between inflammation, and Warburg’s
effect are still currently the topic of a limited number of
scientific papers. Common pathogenesis events involving the
production of oxidant species would lead to the concurrence
of cancer cells with the Warburg’s effect phenotype and of an
inflammatory microenvironment of the tumor which both
favor cancer progression. In a recent paper, Pavlides et al. [43]
elegantly illustrated this situation by showing that the loss
of stromal caveolin-1 leads to oxidative stress and hypoxia,
inducing HIF which favors Warburg’s effect and triggering
NF-κB signaling which, via the activation of inflammatory
pathways, induces inflammation. These cell signaling routes
cause nitric oxide overproduction, mitochondrial dysfunc-
tion and ischemia mimic. Pavlides et al. [43] demonstrated

that, in fact, mice lacking stromal caveolin-1 represented an
animal model displaying the tumor stroma without the
tumor, in other words the stromal ground which pathophys-
iologically dialogs and interacts with Warburg phenotyped
cancer cells during in situ cancer growth and progression.
These results might indicate that stroma cell inflammation
and Warburg phenotyped cancer cells coexist in a kind of
symbiosis in which each cell type takes advantage of being in
the presence of the other. Because of their anti-inflammatory
properties, PPARs should, therefore, affect this symbiosis
between cancer cells and their stromal microenvironment
and hence might impair tumoral growth and cancer progres-
sion. It is possible that part of the anticancer mechanisms of
PPAR ligands might lie in their capacity to disrupt this parti-
cular symbiosis

Targeting tumor stroma by drugs not primarily referred
to as anticancer drugs and including COX-2 inhibitors,
mTOR antagonists and PPARγ agonists has been previously
proposed [44–46]. PPARγ actually displays antiangiogenic
properties which have been proposed to disrupt the symbio-
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sis between the tumor and the host cells in the tumor bed
[46] and which impact negatively several proangiogenic fac-
tors among which VEGF, and βFGF [46, 47]. Phosphoryla-
tion of Erk5 by its activating kinase MEK5 has been
recently shown to activate PPARγ and hence to trigger
antiangiogenetic signaling [48]. On the other hand, PPARγ
has been shown to interfere negatively with VEGF signaling,
lowering VEGF-dependent PKCα activation of CREB and
expression of COX-2 [49].

New advance in the symbiosis existing between the tumor
and its stroma has been recently obtained from highlighting
the key role played by autophagy in tumor-stroma metabolic
crosstalks [50, 51] and on this basis from encouraging
anticancer activity of autophagy modulators [52–58]. These
modulators not only include mTOR antagonists but also a
variety of other pharmacological approaches based on either
stimulation or inhibition of autophagy [54–56, 58]. It is

currently thought that dysregulated (up- or downregulated)
autophagy is detrimental for the permissive complicity exist-
ing between tumor and its stroma, the role of autophagy in
stromal-epithelial metabolic coupling in cancer becoming
better understood [50]. The new anticancer strategies
addressing tumoral stroma and metabolic coupling interfere
with and take place in the Warburg’s phenotype [51]. Like
autophagy modulators, modulation of PPARγ antiinflamma-
tory and antiangiogenic signaling might belong to tumoral
stroma-directed anticancer therapy.

Although currently not included in clinical trials for anti-
cancer therapy, the use of PPARα and agonists might also
be worthy in targeting tumor stroma through antiangiogenic
properties. Antiangiogenic properties of the PPARα agonist
fenofibrate were initially described with a special emphasis
on their protective role against atheromatosis development
[59]. More recently, this fibrate has been shown to block tu-
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moral growth through inhibition of angiogenesis [60] in a
work coming in the wake of the observation that PPARα
deficiency in the host stroma inflammatory cells also sup-
pressed tumoral cell growth [61]. By analogy with autophagy,
forced up- or downregulations of PPARα function by genetic
manipulation or drug intervention would be detrimental for
tumor-host stroma symbiosis through here dysregulation of
angiogenesis pathways. Interestingly, another fibrate, clofib-
ric acid for which clinical use was historically suspended
because of unexplained deaths and of promoting effects on
carcinogenesis, was also recently shown to depress tumoral
growth through inhibition of angiogenesis [62]. Recent
evidence for the involvements of PPARα signaling in anti-
angiogenesis properties resulting from inhibition of either
vascular NADP oxidase 1 [63] or epoxidase which takes place
in arachidonate metabolism [64] strengthens further the
interest of PPARα ligands in disrupting tumor-host stroma
symbiosis through antiangiogenic (and anti-inflammatory)
mechanisms.

PPARβ/δ physiologically increases vascular supply
through VEGF and other signaling of targeted cells and tis-
sues including skeletal muscle and heart [65–68]. The pro-
angiogenic properties of PPARβ/δ make this nuclear receptor
a new pharmacological target to face ischemic events which
may affect heart [69, 70] and brain [71] but also other tissues
such as kidney [72]. Regarding tumoral growth, physio-
logical proangiogenic properties of PPARβ/δ might be re-
garded as undesired properties, potentially strengthening
metabolic coupling between tumor and its stroma, and sever-
al experimental and clinical reports have incriminated a posi-
tive link between PPARβ/δ and tumoral cell growth [73–76].
However, recent evidence highlights that PPARβ/δ and its
ligands may also convey, on the opposite, antiangiogenic pro-
perties [77, 78].

7. PPAR Ligand-Mediated Metabolic Changes
Influencing Cancer Development

The anticancer properties of several PPAR ligands and effects
have been described in experimental models and more re-
cently in human patients [5, 79, 80]. Several putative under-
lying mechanisms have been reported, addressing essentially
cancer cell signalling, cycle, fate, and life/survival balance
determinants [1, 3, 79, 80]. To a lesser extent, the abilities of
PPARs to disrupt the metabolic events that typically take
place in cancer cells and the tightly related changes induced
by biased signaling pathways were also emphasized [1–7, 80–
83]. In this respect, the general anticancer effects exerted by
PPARα on cellular metabolism and inflammation were re-
cently reviewed by Grabacka and Reiss [84]. The anticancer
effects of interest highlighted by these authors included
PPAR cooperation with AMP-dependent protein kinase, re-
pression of AKT-driven oncogenicity, inhibition of cell pro-
liferation, transrepression of inflammatory transcription fac-
tors, and PPAR transactivation properties leading to overex-
pressed UCPs and “forced” metabolic catastrophe [84]. In
the present review, special attention is paid to the metabolic
changes that directly result from PPAR activation and li-

gands and that interfere with Warburg’s effect. The aspects
presented here are far from exhaustive and those developed
in this section and in a larger manner in this review may be
complemented by aspects developed in the other articles
mentioned throughout this review.

General therapeutic interventions that interfere with tu-
moral metabolism have been described above and illustrated
in Figure 3(c). In this figure, the metabolic basis for targeting
mitochondrial and not nuclear DNA is emphasized. As also
mentioned above, 18F-deoxyglucose used in PET scan image-
ry can enter the cell where it is phosphorylated into its phos-
phate derivative without being further processed. 2-Deoxy-
D-glucose may mimic the dissociative effect that glucose-6-
phosphate exerts on the hexokinase II/VDAC complex. This
type of glucose analogues is currently subject to pharmaco-
logical development, and targeting the dissociation of the
hexokinase-VDAC complex is an emerging anticancer ther-
apy [85].

7.1. PPARα Metabolic Changes and Warburg’s Effect. Though
PPARα agonists were initially described to convey anti-
apoptotic properties [86–90], PPARα-driven proapoptotic
mechanisms have been also described [91–93]. Mechanisms
by which the metabolic action of PPARα might interfere with
the Warburg’s effect and induce a pro-apoptotic issue are
illustrated in Figure 7. This figure provides the reader with a
sketch in which direct metabolic effects presented thereafter
about PPARα and ligands move to lead to anticancer activity.

Figure 7 is an attempt to group under the same scenario
several of PPAR and PPAR ligand-mediated direct effects on
intermediary metabolism, notably those induced by PPARα.
The scenario is based on integration of several PPAR-driven
metabolic features depicted in this figure (for the underlying
cell signaling pathways, see the literature cited in this review).

Referring thereafter directly to the steps numbered in
Figure 7, these events include (1) the enhanced cell synthe-
sis and levels of coenzyme A (PPARα) along with (2) increas-
ed mitochondrial acyl-CoA synthetase (ACS) activities
(PPARα) favours (3) the formation of long-chain fatty acyl-
CoAs for which the accumulation (4)is strengthened by de-
ficiency of their removal via glycerol esterification (deficient
glycerol 3P dehydrogenase in cancer cells), (5) and is known
to inhibit hexokinase forms (metabolic regulation). (6) The
inhibition of hexokinase II leads to (7) its detachment from
VDAC which consequently (8) becomes “re-opened” re-
storing transfer of a lot many of small water metabolites
(particularly those negatively charged and with a molecular
weight inferior to 1.5 kDa) from a part to another of
mitochondrial outer membrane. (9) More particularly, long-
chain acyl-CoA esters (which are relatively soluble in water
in comparison to unesterified fatty acids, have a molecular
weight lesser than 1.5 kDa, and are negatively charged be-
cause of the content of CoA in phosphate functions) may via
opened VDAC enter mitochondrial intermembranar space.
(10) In this space fatty acyl-CoA are converted to their acyl-
carnitine esters through action of carnitine palmitoyltrans-
ferase type I (CPT1) for which catalytic activity facing mito-
chondrial intermembrane space is enhanced as a result of
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(10a), its upregulation by PPAR; (10b), reduced malonyl-
CoA levels (resulting from reduced formation (10c) and in-
creased decarboxylation (10d)), and increased synthesis and
import of carnitine (10e). Reduced malonyl-CoA levels result
in an alleviation of inhibitory action on CPT1 which
normally occurs at the site located at the cytosolic aspect of
acyltransferase (this explains that in untreated cancer cells,
high levels of malonyl-CoA may inhibit CPT1 because this
effect does not require that the CoA ester transit by VDAC.
In contrast, β-oxidation of long-chain acyl-CoA requires
entry of CoA esters first in intermembrane space via
transit by VDAC). (11) Fatty acyl-carnitines enter mito-
chondrial matrix via carnitine acylcarnitine translocase
(CACT) located in mitochondrial inner membrane. (12)
They are then converted back to CoA esters by carnitine
palmitoyltransferase 2 (also upregulated by PPAR ligands)
to undergo chain shortening by (13) Mitochondrial β-
oxidation enzymes which are (acyl-CoA dehydrogenases,
notably) upregulated by PPARs. The intramitochondrial
pathway generates cofactors in their reduced forms (NADH
and FADH2), and doing so induces an increased electron flux
towards impaired respiratory chain. (14) The NADH (and
protons) which accumulate locally as a result of their
enhanced production (mitochondrial β-oxidation) and im-
paired management (deficient respiration): (14a) may be
transferred via oxalate-malate shuttle system to cytosol and
(14b) subsequent additional rise in cytoplasmic compart-
ment (14c) may hamper seriously glycolysis to proceed at the
level of glyceraldehyde dehydrogenase (NADH-forming)
step. (15) The intramitochondrial β-oxidation-driven rise in
producing reduced cofactors along with impaired respiratory
electron chain transfer results in generation of free radicals
and other oxidant species. This result is further strengthened
by the sudden general boosting of mitochondrial metabolism

which may emerge from unlocking VDAC and hence
supply of mitochondrial oxidations by massive amounts of
small metabolites (see events contained in the oval associat-
ed with an arrow pointing close to number 15). (16)
This intramitochondrial boosting of metabolism, oxidative
stress, and electron flux create conditions favourable to
trigger apoptosis. (17) These intramitochondrial (17a)
along with other pro-apoptotic events (including (17b),
VDAC in its free form and then its potential availabil-
ity for permeability transition pore, and (17c), down-
regulation of anti-apoptotic factors by PPARγ ligands)
(18) may act on proapototic/antiapoptotic balance to-
wards apoptosis. (19) Impaired respiratory chain (RC)
favours intramitochondrial free radical formation and nota-
bly direct transfer of electrons to molecular oxygen to form
superoxide radical anion via radical intermediates of electron
transfer chain.

Regarding the dissociation of the hexokinase-VDAC
complex mentioned above to be an emerging anticancer
issue, it is well known that the diverse hexokinase forms can
be inhibited by the CoA esters of long-chain fatty acids [94,
95]. Two metabolic effects induced by PPARs (PPARα) favor
the synthesis of long-chain fatty acyl-CoAs: upregulation of
mitochondrial fatty acyl-CoA synthetase [96–98] and en-
hanced cell biogenesis and levels of its cofactor coenzyme A
[99]. The latter PPAR effect is consecutive to the upregula-
tion of pantothenate kinase 1 which catalyzes the rate-limit-
ing step of coenzyme A synthesis. These two metabolic fea-
tures explain how synthesis of long-chain acyl-CoAs is in-
creased following activation of PPARα although one should
not overlook the possibility that PPARβ/δ isoform may up-
regulate another cellular acyl-CoA-synthetase which is
involved in lipid biosynthesis [100]. The PPAR-driven
increase in cell fatty acyl-CoA levels is further strengthened
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secondarily to upregulation by PPARα [101] and PPARγ
[102] of acyl-CoA binding protein which is known to stim-
ulate acyl-CoA synthetase activity by removing (binding)
the enzyme product [103, 104]. This increase in long-chain
acyl-CoAs is also favored by the relative lack of glycerol 3-P
which normally branches off glycolysis via glycerol 3P
dehydrogenase, the latter being deficient in cancer cells [35]
as mentioned above. The impairment of this glycerol esteri-
fication pathway shifts the acyl-CoA esterification/oxidation
balance towards oxidation.

Long-chain fatty acyl-CoAs produced by mitochondria
are formed in the vicinity of the VDAC-HKII complex
since in cancer cells mitochondrial acyl-CoA synthetase and
this complex are both located in the mitochondrial outer
membrane. As a result of their inhibitory properties towards
hexokinase forms, a local rise in the concentration of long-
chain acyl-CoAs should logically inhibit HKII. This effect
might be also induced by CoA esters of the pharmacological
carboxylic ligands of PPARs. Previously described CoA esters
of PPAR ligands include fenofibroyl-CoA, nafenopin-CoA,
ciprofibroyl-CoA, and bezafibryl-CoA [105–107].

Importantly, inhibition of HKII activity is classically
known to induce its dissociation from VDAC. VDAC, which
is closed during its interaction with HKII, then reopens when
hexokinase detaches. Since VDAC is involved in the trans-
port of long-chain acyl-CoAs through the mitochondrial
outer membrane [34], the opening of this channel unlocks
the access of long-chain acyl-CoA to the mitochondrial
intermembrane space. In this space, long-chain acyl-CoAs
are converted to their carnitine esters by mitochondrial
outer membrane carnitine palmitoyltransferase 1 which has
its catalytic center facing intermembrane space in contrast
to its malonyl-CoA-binding site which is located at the
cytosolic aspect of the mitochondrial outer membrane
[108, 109]. This acyltransferase may be stimulated following
PPAR activation for several reasons, including upregulation
by PPARα and γ agonists [110–112] and the PPARα-
driven release of the inhibition exerted by malonyl-CoA.
The release of the inhibitory action of malonyl-CoA on
carnitine palmitoyltransferase 1 involves the contribution
of PPARα toward the downregulation of acetyl-CoA car-
boxylase (malonyl-CoA forming enzyme) [113] and the
upregulation of malonyl-CoA decarboxylase (malonyl-CoA
catabolizing enzyme) [114]. Other PPARα-driven metabolic
changes which contribute to stimulate carnitine-dependent
entry of fatty acids in mitochondria are the upregulation
of both carnitine synthesis and its transport across the cell
membrane [115, 116].

Long-chain acyl-carnitines are transferred from the mito-
chondrial intermembrane space to the mitochondrial matrix
via the action of carnitine acylcarnitine translocase which
belongs to the mitochondrial inner membrane. Within mito-
chondria, fatty acylcarnitines are converted back to their CoA
esters by carnitine palmitoyltransferase 2 which is also the
product of an upregulated target gene of PPARα [117]. Fat-
ty acyl-CoAs produced by this acyltransferase are oxidized on
the inner side of the mitochondrial inner membrane (very
long-chain acyl-CoA dehydrogenase and trifunctional pro-
tein) and finally in the matrix. Intramitochondrial β-oxida-

tion enzymes, very long-chain [118] and medium-chain
acyl-CoA dehydrogenases [119] are themselves also upreg-
ulated by PPARα ligands.

In cancer cells with relatively inactive mitochondria, stim-
ulation of both the supply of acyl-CoA and increased β-oxi-
dation rates boosts the metabolism in these organelles. The
huge increase in the electron flux towards the respiratory
chain, often impaired in cancer cells, cannot be handled
adequately by tumoral mitochondria resulting in a rise in free
radicals and other oxidant species. This oxidative stress may
then trigger mitochondria-induced apoptosis.

The anticancer potentialities of these PPAR effects con-
cern cancer cells with so-called lazy mitochondria and may
not address all cancer cell lines. Indeed, some cancer cell lines
exhibit enhanced mitochondrial β-oxidation rates with in-
creased UCP-driven uncoupled accelerated electron transfer
rates. In these cases, it has been proposed to be opportune, on
the opposite, to act therapeutically by inhibiting [120] rather
than stimulating mitochondrial fatty acid oxidation. In can-
cer cells, the pro-apoptotic basis for “forcing” mitochondrial
fatty acid oxidation to proceed at substantial rates might be
relatively close to the anticancer mechanisms underlying the
effects of mitochondrial membrane permeating compounds
such as dichloracetate and pyruvate methyl ester (see above
in the text, Figure 3(c)). These two mitocans, by restoring
substantial intramitochondrial pyruvate oxidation, are
thought to boost the electron flux towards the respiratory
chain and hence, in these circumstances, induce an oxidative
stress which triggers mitochondrial apoptosis. In this per-
spective, mitochondrial β-oxidation-inducing PPAR ligands
could be also classified as mitocans. Importantly, increased
plasma ketone body levels may result from PPAR ligand-
driven stimulation of mitochondrial β-oxidation in ketone
body-producing organs. Increased exposure of cancer cells to
circulating or local ketones might also boost the electron flux
towards mitochondrial respiration at the level of complex
II (ketolysis involves succinyl-CoA; acetoacetate CoA trans-
ferase and produces succinate). Whether in cancer cell
mitochondria such a load on the ketolytic route might trigger
apoptosis remains, however, to be elucidated.

7.2. PPARγ Metabolic Changes and Warburg’s Effect. The
pro-apoptotic properties of PPARγ and its ligands may also
favor the commitment of cancer cells towards apoptosis. The
ligands may act via mechanisms either dependent or inde-
pendent of PPAR. These mechanisms directly address key
signaling players of pro-apoptotic routes and were recently
reviewed [83].

Regarding mitochondria and apoptosis, PPARγ agonists
were also recently described to probably target, via PPAR-
independent mechanisms, adenylic nucleotide transporters
(ANT) [121]. The mitochondrial permeability transition
pore complex also recruits VDAC and seems to require the
channel to be available in a form dissociated from HKII.

An interesting point is the increase in fatty acid synthesis
which in many cancer cell lines is accompanied by increased
fatty acid synthase (FASN) capacity and contributes to
tumoral cell development [122–125]. Increased fatty acid
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content represents a reservoir of precursors for signaling
molecules that may promote cancer development. As devel-
oped elsewhere [126], free fatty acids including those gener-
ated by FASN may be toxic for cells. To overcome fatty acid-
driven lipotoxicity, cancer cells overexpress enzymes involved
in triacylglycerol synthesis, a pathway which removes cellular
fatty acids and stores them in a mobilizable and less toxic
form (see [126]). In this respect, it has been suggested that
a “lipogenetic benefit” results from an unexpected crosstalk
between the tyrosine kinase HER2 (human epidermal
growth factor receptor) and FASN [127–133]. In cancer cells,
this cross-talk is the basis for alleviating fatty acid-driven
toxicity by coupling triacylglycerol synthesis to free-fatty acid
formation [130, 134, 135], actually increasing aerobic glycol-
ysis or Warburg’s effect by pull effect (the pull effect refers
to the ability of a metabolic step or pathway to stimulate the
step or pathway that precedes it, the principle being similar
to the favored displacement of the equilibrium of a chemical
reaction towards the product when it is removed, for
instance, by evaporation or chelation, from the reaction
medium). PPARγ- and PPARγ-binding proteins are in these
conditions upregulated by overexpressed HER2 and activate
the lipogenetic triacylglycerol synthesis pathway [130, 134,
135]. Very importantly, this collaboration between HER2
and FASN also takes place out of a pathological context
and is of physiological relevance in adipogenesis, that is,
proliferation and differentiation of adipocyte cell precursors
[130, 136].

7.3. PPARβ/δ Metabolic Changes and Warburg’s Effect. Like
other PPAR isoforms, PPARβ/δ exerts antiinflammatory and
metabolic properties. The clinical use of PPAR ligands only
currently emerges, and this shed lights on the physiological
activity of this nuclear receptor. Part of the effects of
PPARβ/δ overlaps those exhibited by either PPARα or
PPARγ and includes adipocyte differentiation and improved
insulin resistance, stimulated fatty acid oxidation in target
tissues (heart and skeletal muscle) [67]. For instance,
specific PPARβ/δ agonists may increase HDL cholesterol or
HDL/LDL cholesterol ratio, and may decrease excess cir-
culating triglycerides and insulin levels, and, like agonistic
PPARα and PPARγ ligands, can counteract some of the
aspects of the metabolic syndrome [67, 137–140]. The events
depicted in Figure 7 for PPARα might also partially apply to
PPARβ/δ inasmuch its activation may increase mitochon-
drial fatty acid oxidation in tissues through changes paral-
leling somewhat those exerted by PPARα and including up-
regulations of carnitine palmitoyltransferase type I, carnitine
acylcarnitine translocase, and long-chain acyl-CoA dehy-
drogenase [141, 142]. In this respect, PPARβ/δ has been
shown to enable a metabolic shift from glucose to fatty acid
utilization [143]. In this respect also, PPARβ/δ has been des-
cribed to enable metabolic compensation in deficient PPARα
conditions [144].

Besides PPARα-like effects, PPARβ/δ also displays
PPARγ-like effects in targeting the white adipocytes, favoring
cell differentiation, fatty acid oxidative capacity, and insulin
sensitivity of adipocytes [67].
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7.4. PPAR-Dependent and Independent Metabolic Changes
Induced by Ligands. An essential point determining the exact
pathophysiological roles of PPARs and hence their thera-
peutic potentialities is to distinguish receptor from “extra-
PPAR receptor” effects of PPAR ligands. This point has been
reviewed by Scatena et al. [145]. These authors highlighted
the inhibition of the respiratory chain, notably complex I,
as extra-PPAR activities of ligands thus underlining a weak
inhibitory effect for PPARα ligand fibrates associated with
both glucose and fatty acid oxidations and low differentiating
properties. In contrast, PPARγ ligand thiazolidinediones
which mediate stronger inhibition of complex I associated
with essential glucose utilization and strong cell differentiat-
ing activity. The authors also recall that PPAR ligands were
initially described as nongenotoxic carcinogens, at least in
rodents. Despite such effects, these ligands appear sometimes
but not always to be able to influence cancer development in
a way favorable for patients.

7.5. PPAR, Metabolic Syndrome and Cancer. As illustrated in
Figure 8, the tissue distribution and physiological functions
of the various PPARs put these nuclear receptors in a priv-
ileged position to counteract, through partially overlapping
mechanisms, various aspects of the metabolic syndrome.
Moreover, cumulated actions of these receptors, as could be
achieved by PPAR panagonists, might theoretically jugulate
all of the aspects of the metabolic syndrome [146]. On the
other hand, metabolic syndrome (defined as a combination
of several of the four following traits dyslipidemia, high
fasting glycemia, hypertension, and obesity) is currently per-
ceived as a condition which strongly promotes cancer pro-
gression [147]. Therefore, the activation of PPARs by
preventing or treating the metabolic syndrome removes one
important condition promoting tumoral growth though
other anticancer mechanisms may be shared by PPARs. As
indicated throughout this manuscript, PPAR activation may
also trigger signaling that, in contrast, favors tumoral growth.
So, the general problem inherent to PPARs and use of PPAR
ligands in cancer therapy lies in the fact that pleiotropic ef-
fects of these nuclear receptors encompass both cancer brake
and accelerator mechanisms. The fact that distinct signaling
may be involved in pro- and anticancer properties of PPAR
offers the hope to use successfully PPAR ligands in cancer
therapy in combination with other active anticancer drugs
that overcome the PPAR pro-oncogenic effects. This issue is,
however, complicated by the fact that the biological activity
of PPAR may be modulated in a cell-or-tissue specific man-
ner and for a same PPAR by the ligand, a phenomenon referr-
ed in the literature to SPPARM (selective PPAR modulation)
[146], suggesting that PPAR effect in cancers might be cancer
dependent. Despite some limits in a wide use of PPAR ligands
to treat cancers, clinical trials have been already initiated in
this field in recent years. A nonexhaustive presentation of
these trials is given in the next section.

8. Clinical Trials with
Anticancer PPAR Ligands

Clinical trials for evaluating anticancer therapies based on
targeting PPAR signaling have been developed against differ-
ent cancers. For this purpose, drugs that mostly act on the
γ isoform of PPARs have been used, not necessarily elucidat-
ing whether the drugs work via PPAR-dependent mecha-
nisms or via PPAR-independent mechanisms due to their
chemical structure. The main results obtained to date are
given in Table 1. This table is commented below, and the
studies described in this table may be completed by general
reviews that further stress the therapeutic potential of thiazo-
lidinediones as anticancer drugs, the antineoplastic effects of
PPARγ and its role as an antioncogene, the synergetic effects
of retinoids in cancer therapy and finally an explanation for
the mechanisms underlying the modulation of cancer cell
phases [171–181].

In liposarcoma, two phase II trials with PPARγ agonists
(either troglitazone or rosiglitazone) [148, 149] indicated cell
differentiation of the solid tumors without, however, correla-
tion between drug-induced PPARγ activity in the tumor and
the clinical coutcome.

Prostate cancer has been the subject of several clinical
trials, and the tumoral growth of human prostate cancer cell
lines has also been studied [150–155]. Thiazolidinediones,
PPARγ agonists, troglitazone and rosiglitazone, led to con-
flictual results with two encouraging trials and one trial
showing no advantage over the placebo [154]. The deleteri-
ous effect of the PPARγ expression and variants were also
studied, indicating no association between the Pro12Ala
polymorphism and prostate cancer [151], suggesting there-
fore that PPARγ does not promote prostate cancer develop-
ment [154]. A study with the LTB4 receptor antagonist
LY29311 also known for its PPARγ activating properties fail-
ed to demonstrate any efficacy when used in combination
with the anticancer drug gemcitabine in advanced prostatic
carcinoma [155].

Colo-rectal cancer was also targeted by a clinical phase II
trial using the PPARγ agonist thiazolidinedione troglitazone
against chemotherapy resistant metastatic colorectal cancer
[156]. No objective or negative tumor response was observed
in this and other studies [156–158]. Interestingly, in the
scope of the Bezafibrate Infarctus Prevention (BIP) study,
some experimental support was obtained to suggest preven-
tive effects for bezafibrate (a PPAR panagonist) against the
development of colon cancer [159].

A phase II clinical trial using troglitazone in metastatic
breast cancer refractory to chemotherapy or hormonal thera-
pies suggested moderate efficacy of this PPARγ agonist [160].
At the same time, preclinical studies indicated that in breast
cancer cell lines PPARα expression is dependent on the estro-
gen receptor and represents a marker for sensitivity/resist-
ance to histone deacylase inhibitors [161]. When PPARγ1
signalling is increased in breast cancer, it impacts the balance
between cell death and cell proliferation in favor of tumoral
growth [162].

Studies in leukemia suggested that PPARγ regulates apop-
tosis at the level of caspase 8, and its coactivator DRIP205
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was found to promote cell differentiation via PPARγ [164].
Sensitization of TRAIL-resistant cells to TRAIL was also
reported for the natural PPARγ agonist 15d-PGJ2, however,
independently of PPARγ signaling [163].

In thyroid cancer, the synthetic PPARγ agonist rosigli-
tazone was shown to enhance the uptake of radioiodine by
thyroid tumors in a way apparently independent of PPARγ
[165, 166]. Although this effect is not per se an anticancer
mechanism, it is of therapeutic interest in potentiating
the radioiodine-based chemotherapy of hyperthyroidism,
thyroid, and other cancers. Interestingly, this potentiating
effect indicates that rosiglitazone administration should be
theoretically questioned in a context of defective nuclear
power plants or in people living close to these plants.

PPARγ targeting in human glioma and glioblastoma has
provided encouraging results in in vitro and in vivo studies
when thiazolidinedione is combined with either a statin or a
coxib. Yao and coworkers [167] have shown anticancer activ-
ity with a combination of lovastatin and troglitazone in glio-
blastoma and lung cancer cells. The anticancer properties of
the exposure of cells to this dual treatment included the
combined enhancement of intracellular levels of P27 [Kip 1]
(usually induced by statins) and E2F1 (induced by glita-
zones) along with changes in the status of CDK2, cyclin A
and Rb phosphorylation. A phase II study combining the
PPARγ agonist pioglitazone and rofecoxib with low-dose
chemotherapy in high-grade gliomas pointed out a moderate
benefit and encourages the future use of this cocktail in high-
ly selected patients [168].

Head and neck cancers were also challenged with
PPARγ ligands with some benefit as reviewed elsewhere by
Schweitzer et al. [169].

In melanoma, tumoral cell growth has been shown to be
inhibited by the thiazolidinedione ciglitazone, in a way in-
dependent of PPARγ activation [170]. This antitumoral acti-
vity of ciglitazone has been further shown to involve down-
regulation of chemokine CXCL1 and microphthalmia-asso-
ciated transcription factor, MITF, two proteins overexpressed
in human and playing a key role promoting its pathogenesis
[182].

9. Conclusions and Perspective

This review has attempted to account for the rationale under-
lying the metabolic functioning of cancer cells in relation
with Warburg’s effect, and its corollaries in terms of meta-
bolic vulnerability. More precisely, the metabolic behavior of
cancer cells with lazy mitochondria was emphasized because
it theoretically represents a nearly ideal target for PPARα
agonists to reverse the cancer cell-driven metabolic lock of
mitochondrial metabolism. Nevertheless, the perception of
Warburg’s effect currently evolves, and in this context defec-
tive mitochondrial oxidative capacity is not longer viewed
as a mandatory component, substantial mitochondrial oxi-
dative activities contributing in this context to cover cancer
cell energetic needs. Anticancer metabolic and other effects
presented throughout the text in relation with the Warburg’s

effect should be completed in more details with anticancer
activities exerted by PPAR ligands in many realms other than
metabolism, inflammation, and angiogenesis as for instance
cell cycle, cell survival, cell maturation, cell differentiation,
tumoral invasion, and apoptosis. In this review, the latter
process has been further proposed to be sensitive to unlock-
ing of mitochondrial metabolism and respiration induced
by PPARα agonists. Surprisingly, clinical trials with PPARα
ligands are still to be initiated, possibly because they were ini-
tially described to be nongenotoxic carcinogens that could
mediate antiapoptotic properties [86–90]. Since then species
differences [183] and PPARα-driven pro-apoptotic mecha-
nisms [91–93] have been documented. In contrast, several
trials with PPARγ ligands have been conducted to date.
PPARγ and their ligands are shown in the literature to favor
apoptosis via multiple actions on cell-signaling pathways. At
the same time, they may also be able to promote anti-apop-
totic pathways. This is now well documented for the PPARγ
ligand troglitazone which promotes apoptosis via upregula-
tion of the TRAIL death receptor, inhibition of the anti-
apoptotic proteins FLIP, and downregulation of survivin
[184]. In turn, troglitazone may also activate anti-apoptotic
pathways, for instance, via enhanced phosphorylation of
ERK and subsequently of BAD, resulting in increased avail-
ability of the anti-apoptotic proteins Bcl-2 and Bcl-XL to
scavenge key pro-apoptotic mediators such as BAX [185].
The fact that in this case pro- and anti-apoptotic actions are
mediated by separate signaling pathways offers the perspec-
tive of potentiating the former by inhibiting the second, and
in practice, by combining troglitazone with an inhibitor of
the events leading to BAX sequestration via the anti-apop-
totic proteins mentioned above. The need for this association
of PPAR ligands with other anticancer agents is perhaps one
of the most important lessons to be learned from clinical
trials based on the use of these ligands to treat cancer.
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[20] O. Warburg, “Über den stoffwechsel der carcinomzelle,”
Klinische Wochenschrift, vol. 4, no. 12, pp. 534–536, 1925.

[21] O. Warburg, “On respiratory impairment in cancer cells,”
Science, vol. 124, no. 3215, pp. 269–270, 1956.

[22] E. Hernlund, L. S. Ihrlund, O. Khan et al., “Potentiation of
chemotherapeutic drugs by energy metabolism inhibitors 2-
deoxyglucose and etomoxir,” International Journal of Cancer,
vol. 123, no. 2, pp. 476–483, 2008.

[23] P. P. Hsu and D. M. Sabatini, “Cancer cell metabolism:
warburg and beyond,” Cell, vol. 134, no. 5, pp. 703–707, 2008.

[24] R. J. DeBerardinis, “Is cancer a disease of abnormal cellular
metabolism? new angles on an old idea,” Genetics in Medicine,
vol. 10, no. 11, pp. 767–777, 2008.

[25] C. V. Dang, A. Le, and P. Gao, “MYC-induced cancer cell
energy metabolism and therapeutic opportunities,” Clinical
Cancer Research, vol. 15, no. 21, pp. 6479–6483, 2009.

[26] S. J. Yeung, J. Pan, and M. H. Lee, “Roles of p53, myc and hif-
1 in regulating glycolysis—the seventh hallmark of cancer,”
Cellular and Molecular Life Sciences, vol. 65, no. 24, pp. 3981–
3999, 2008.
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